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Fig. 1. Comparison of our Weingarten regularizer (top row) and the full-Hessian-based method of previous work [Dong et al. 2024] (bottom row) on a CAD
part reconstruction: both achieve similar-quality surfaces, but our method converges in roughly half the time and uses about half the memory.

Neural signed-distance fields (SDFs) are a versatile backbone for neural
geometry representation, but enforcing CAD-style developability usually
requires Gaussian-curvature penalties with full Hessian evaluation and
second-order differentiation, which are costly in memory and time. We
introduce an off-diagonal Weingarten loss that regularizes only the mixed
shape operator term that represents the gap between principal curvatures
and flattens the surface. We present two variants: a finite-difference version
using six SDF evaluations plus one gradient, and an auto-diff version using
a single Hessian-vector product. Both converge to the exact mixed term
and preserve the intended geometric properties without assembling the full
Hessian. On the ABC benchmarks the losses match or exceed Hessian-based
baselines while cutting GPU memory and training time by roughly a factor
of two. The method is drop-in and framework-agnostic, enabling scalable
curvature-aware SDF learning for engineering-grade shape reconstruction.
Our code is available at https://flatcad.github.io/.
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1 INTRODUCTION

Neural implicit representations of geometry, specifically signed-
distance fields (SDFs) encoded by multilayer perceptrons have be-
come a novel and powerful representation in 3D vision and graphics.
Early work [Mescheder et al. 2018; Park et al. 2019] showed that a
modest MLP could store a watertight shape and support arbitrary
resolution through continuous evaluation and differentiation. That
promise was broadened by SIREN [Sitzmann et al. 2020], whose sinu-
soidal activations capture fine geometric detail and high-frequency
signals, and positional encodings that brought ReLU-based networks
to high detail accuracy [Tancik et al. 2020] and essentially real-time
performance [Miiller et al. 2022].

However, for accurate geometric representations, a remaining
challenge was geometric faithfulness: vanilla SDF fits can satisfy
point-wise losses while remaining wildly inconsistent in surface
detail or curvature. Lipman et al. addressed this with the Implicit
Geometric Regularizer (IGR) [Gropp et al. 2020], adding an Eikonal
term |Vf|| ~ 1 that enforces unit-length gradients, followed by
second-order methods like DiGS [Ben-Shabat et al. 2021], which sta-
bilizes training using the divergence, and Neural-Singular-Hessian
[Wang et al. 2023], which pushes the network’s Hessian toward low
rank, which discourages spurious curvature and enforces piece-wise
smoothness that matches better with classical differential geometry.

That thread naturally intersects with computer-aided design
(CAD). Mechanical parts are dominated by plates, cylinders, cones,
and developable blends whose Gaussian curvature is zero almost
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everywhere, except for sharp feature curves. Encoding these prop-
erties in an SDF prior promises more faithful reconstructions from
sparse or noisy scans and cleaner patch decomposition for down-
stream parametric recovery. NeurCADRecon [Dong et al. 2024]
recently embodied that idea: it augments a SIREN network with a
“developability” loss that minimizes the magnitude of Gaussian cur-
vature |K| over a thin shell around the surface, thereby encouraging
each learned patch to flatten out unless data dictates otherwise.

Unfortunately, such elegance comes at a price. The Gaussian
curvature of an implicit surface depends on all nine entries of the
Hessian of the network. In automatic differentiation frameworks
this means six Jacobian-vector products and thus seven backward
passes per sample, plus the retention of second-order computational
graphs. Memory footprints balloon, forcing small batches; iteration
times rise, limiting practical resolutions.

To address these limitations we propose a novel curvature regu-
larization loss. In particular, our contributions are the following:

o Curvature gap regularization. We regularize only the off-
diagonal Weingarten shape operator term, letting each prin-
cipal curvature follow the data while flattening hyperbolic
and parabolic patches and rounding elliptic ones uniformly.
In other words, we minimize the “curvature-gap” which is
the difference between the principal curvatures and we de-
note the resulting regularizer the off-diagonal Weingarten
loss (ODW-loss). It is described in detail in Section 3.

e Two implementations. We propose two variants for com-
puting the regularizer: (i) Finite-differences, which uses for-
ward and backward offsets (six additional SDF queries plus
one gradient evaluation) and introduces no second-order
graphs; (ii) Auto-differentiation, which employs a single
Hessian-vector product obtained with two reverse sweeps,
thereby avoiding full-Hessian assembly and running faster
in practice. Both are described in detail in Section 4.

o Efficiency without loss of accuracy. On the ABC CAD

benchmark our proxies match or slightly outperform Hessian-

based baselines while roughly halving GPU memory use and
training time. The details are presented in Section 5.

Because the method is drop-in and framework-agnostic, it makes
curvature-aware neural SDFs practical for large-scale, engineering-
grade shape reconstruction. Our implementation is available at

https://flatcad.github.io/.

2 RELATED WORK

Implicit Surface Representations and Reconstruction. Implicit repre-
sentations have emerged as a powerful alternative to explicit surface
models due to their continuous and differentiable nature. Recon-
structing surfaces from point clouds has long been a fundamental
task in computer graphics, and recent years have witnessed a surge
in learning-based implicit approaches.

Early implicit methods compute the signed distance to the tangent
plane of the closest surface point [Hoppe et al. 1992]. Subsequently,
radial basis function (RBF) methods were introduced to fit the zero
level-set of the signed distance function, enabling smooth surface
reconstruction [Carr et al. 2001; Huang et al. 2019; Li et al. 2016].
Another family of methods formulates reconstruction as solving

partial differential equations, such as Poisson Surface Reconstruc-
tion (PSR) [Hou et al. 2022; Kazhdan et al. 2020, 2006; Kazhdan
and Hoppe 2013], which computes an occupancy field by solving a
Poisson equation. Parametric Gauss Reconstruction (PGR) [Lin et al.
2022] improves normal consistency by leveraging the Gauss formula
from potential theory. These methods build surfaces analytically by
imposing strong geometric constraints.

In contrast, neural implicit methods learn to map 3D coordi-
nates to continuous scalar fields, representing the surface as the
zero level-set of a neural network. DeepSDF [Park et al. 2019] pi-
oneered the use of an auto-decoder that optimizes a latent code
per shape using MAP estimation. Supervised learning-based ap-
proaches extend this idea by training on datasets with precomputed
ground-truth field values, using structured representations such as
voxel grids [Chabra et al. 2020; Jiang et al. 2020; Peng et al. 2020], k-
nearest neighbor graphs [Boulch and Marlet 2022; Erler et al. 2020],
and octrees [Huang et al. 2022; Tang et al. 2021; Wang et al. 2022].
Some methods target open surfaces or unsigned distance fields
(UDFs) [Chibane et al. 2020; Ye et al. 2022]. While these methods
can reconstruct detailed shapes, they often encode a fixed represen-
tation for a family of similar shapes and thus generalize poorly to
unseen geometries.

To address generalization and robustness, recent methods directly
optimize a neural field from raw point clouds in a self-supervised
fashion. These methods typically rely on regularization terms that
encode geometric priors. For example, IGR[Gropp et al. 2020] intro-
duces the Eikonal regularization to encourage unit-norm gradients,
a defining property of valid distance fields. SAL and SALD[Atzmon
and Lipman 2019] adopt sign-agnostic learning to regress signed
distances from unsigned data. SIREN [Sitzmann et al. 2020] uses
periodic activation functions to preserve high-frequency details.

To further enhance geometric fidelity, higher-order constraints
have also been explored. The Hessian matrix of a neural field encodes
its second-order derivatives, making it a natural vehicle for express-
ing differential properties such as surface curvature. DiGS [Ben-
Shabat et al. 2021] penalizes the divergence of the gradient field as
a soft constraint, encouraging smooth transitions across the surface.
Neural-Singular-Hessian [Wang et al. 2023] directly regularizes the
Hessian by minimizing the smallest singular value to make it rank-
deficient near the surface, promoting developability and reducing
spurious oscillations. These second-order constraints have proven ef-
fective in restoring fine-grained geometric structures. Concurrently,
other curvature-guided regularizers have been explored for surface
INRs [Novello et al. 2023; Sang et al. 2025], and rank-minimization
schemes have been proposed to approximate developability [Sel-
varaju 2024].

Surface Reconstruction of CAD Models. In the context of CAD
model reconstruction, several approaches have focused on fitting
predefined geometric primitives. [Kania et al. 2020] and [Sharma
et al. 2017] adopt primitive fitting pipelines, while [Li et al. 2018]
employ supervised learning to detect primitive types and fit patches
such as planes, cylinders, and spheres. [Sharma et al. 2020] ex-
tend this idea to B-spline patches using differentiable segmentation,
and [Uy et al. 2021] segment point clouds into extrusion cylinders
assembled via Boolean operations. However, these methods often
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require voxelized and oriented inputs, which makes them less prac-
tical for handling complex CAD assemblies that are scanned as raw,
unoriented point clouds.

More recently, implicit neural representations have also been ap-
plied to CAD reconstruction under a self-supervised setting. [Dong
et al. 2024] proposes a novel formulation that integrates curvature-
based regularization into the learning process. Specifically, it in-
troduces a Gaussian curvature loss that encourages zero curvature
across the reconstructed surface, based on the assumption that CAD
models are composed of piecewise-developable patches. This curva-
ture regularization is expressed through a differentiable formulation
involving the Hessian of the neural SDF.

3 METHOD

Our goal is to learn a neural signed-distance field f from an unori-
ented point cloud such that its zero-set reproduces the target CAD
surface. We keep the standard supervision recipe used by implicit
reconstruction methods and add a minimal curvature regularizer
that removes local warp, flattening developable and saddle parts
and rounding elliptic ones—without ever building a full Hessian.

First, we inherit standard supervision terms commonly used in
implicit learning: a Dirichlet condition on the zero-level set, as
proposed by Atzmon et al. [Atzmon and Lipman 2020], and the
Eikonal constraint [Gropp et al. 2020], which enforces unit gradient
norms in the vicinity of the surface. These terms ensure fidelity to
the input data and preserve geometric consistency.

Second, and most importantly, we introduce a novel curvature
regularizer that suppresses the difference between the principal
curvatures of the learned surface. This regularization is particularly
effective for CAD surfaces, as it forces parabolic and hyperbolic sur-
face parts to be planar and elliptic areas to be umbilical (cf. Figure 2).
In combination with the surface reconstruction (Dirichlet) and unit
gradient field (Eikonal) losses, it promotes flatness where the target
is hyperbolic and parabolic, and spherical uniformity where it is
doubly curved.

Unlike previous methods that construct the full 3x3 Hessian [Dong
et al. 2024; Wang et al. 2023], our formulation needs only a single
Hessian-vector product per sample, eliminating explicit Hessian
assembly and speeding up training. Additionally, we also propose a
first-order finite-difference approximation, which avoids Hessian
computation entirely, enabling significantly faster training while
retaining the geometric benefits of curvature regularization.

3.1 Signed-Distance Fields and Surface Geometry

We represent a surface M c R3 implicitly as the zero-level set of a
signed-distance field (SDF)

fR*—R  M={x]|f(x) =0}

Because a true SDF satisfies ||Vf|| = 1 in a neighborhood of M, its
normal direction is locally linear:

v

7] =n'H n=0, n= s
nnf =0 Hy V7
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where Hy = [x,dx; f] is the Hessian of the SDF. The shape-operator
(Weingarten map) is obtained by projecting Hy into any orthonor-
mal tangent frame (u, v):

. (u:Hfu u:va) .

V. Hpu v Hev

That operator (Weingarten map) takes any tangent vector and re-
turns how fast the surface normal rotates in that direction, i.e., the
local bending. Its eigenvalues are the principal curvatures k1, k2;
their product gives the Gaussian curvature K = kjkz = detS. To-
gether, these values distinguish spherical, planar, parabolic, elliptic,
and hyperbolic regimes as illustrated in Fig. 2.

Rotation of S and the Mixed Entry. In the principal frame the shape

operator is
K 0
So=["2 .
0 k2

We can rotate a tangent basis by an angle  through

cosf —sinf
sin 0 cos 6

R(9)=( ) R'R=1I

The operator in the rotated frame is the orthogonal transform

Kk1cos? 0 +kzsin® 0 (k2 — k1) sin 6 cos @

S(0) =R"SyR = (

(k2 — k1) sinfcos@ ki sin® @ + ky cos? 6

The off-diagonal component is
$12(0) = (k2 — k1) sinfcos 0 = %(Kz — K1) sin 26. (1)

Thus S12 is a warp measure: it vanishes in a principal frame and is
proportional to the curvature difference in any other frame.

3.2 Maximum Likelihood Estimation

During training we penalize sz (or [S12[, see below), in particular,
for each point we sample a fresh random frame angle 8 each iteration
(which in practice is equivalent to sampling a fresh random vector
u orthogonal to n, and completing the frame with v using the cross
product).

Taking the expectation of sz over 0 € [0, 27) yields

(13 — K1)*

B[S}, (0)] = 7

Eg [sin2 20].
Because
1 [ 1
Eg [sin2 29] = —/ sin?20df = -,
2 0 2
we obtain

Bpls = 3 (2 — ). @)

Equation (2) vanishes iff k1 = k2. Hence gradient descent on sz

systematically suppresses the curvature gap without directly pushing
either curvature to zero.
Because the frame angle is resampled independently as 6 ~ U0, 277),
the off-diagonal Weingarten entry Si2 is a zero-mean random vari-
able. The mini-batch average of S%z (or |S12|) is thus an unbiased
Monte-Carlo estimate of its expectation over 6. If the measurement
noise on Sy2(6) is assumed Gaussian with variance o2, the negative
log-likelihood reduces—up to a constant—to

2}7 Z S12(0)% .
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Fig. 2. Principal curvatures k1 and k, are the eigenvalues of the Weingarten map S. Their product gives the Gaussian curvature K = k1kz = det S. Because
S is self-adjoint with respect to the first fundamental form, its eigenvectors (the principal directions) are orthogonal in the surface metric whenever the
eigenvalues are distinct. At an umbilic point (e.g. on a sphere) the entire two-dimensional tangent plane is the eigenspace, so no unique pair of principal

directions exists. For a plane the second fundamental form vanishes, i.e., S = 0.

Minimizing the squared off-diagonal entry is therefore the maxi-
mum-likelihood estimator for the zero-warp hypothesis. Conse-
quently, the L? formulation possesses a clear maximum-likelihood
interpretation under the common Gaussian-noise assumption.

Expectation of the absolute value. Adopting a Laplace noise model
instead yields the absolute-value, with the same Monte-Carlo inter-
pretation. With 6 ~ Uniform|0, 27),

Eg[1512(0)1]

|k — k1] Eg[lsin@cos 9|]

1 2
|xc2 — K1l —/ |sin 0 cos 6] d6.
2r 0

Evaluating the integral:
21 1 21 1
/ |sin O cos 0] dO = —/ [sin20]|d0 = —=x4 =2
0 2 Jo 2

yields
1
Eg[IS12l] = ;lkz - k1l. (3

While the squared Weingarten loss has elegant Gaussian-noise
and variance interpretations, in a SIREN setting the practical stabil-
ity, edge preservation, and faster optimization of the absolute-value
off-diagonal Weingarten loss generally outweigh the theoretical
neatness of L2.

SIREN network’s high-frequency sine layers can generate very
large local gradients; employing the absolute (L!) loss caps each
sample’s gradient at +1, preventing exploding updates while pre-
serving sharp detail, and thus trains more stably than the squared
(L?) version.

3.3 Hessian Deficiency

Evaluating Sz directly on the zero level-set is numerically unstable:
the Hessian is rank-deficient because dn, f = 0. In fact, since the
Eikonal condition enforces ||V f]|| = 1, differentiating this constraint
along the normal direction yields

ou(3IVFI?) = (Hpw) - VF =

which means that one eigenvalue of Hy must vanish, making the
Hessian singular on the surface. This property of signed distance
fields is also emphasized by Wang et al. [Wang et al. 2023], who use
it as the basis for their Neural-Singular-Hessian regularizer.

nTan =0,

To address the numerical instability, we follow the sampling
strategy of Dong et al. [Dong et al. 2024]. At each iteration, we
sample a static shell Q by drawing one point around every input
point p from a 3D Gaussian whose standard deviation equals the
distance to its 50-th nearest neighbor, yielding a fixed batch of 15k
near-surface points. We then evaluate Sz on Q, which provides
stable signals while leaving the standard data and Eikonal terms
unchanged.

The off-diagonal Weingarten loss is hence a minimal, orientation-
free condition that suppresses the curvature difference (k3 — k1),
thereby isolating the spurious “warp” defect and flattening hyper-
bolic and parabolic areas.

Because the loss depends only linearly on this mixed second
derivative, rather than on quadratic combinations of Hessian entries,
it yields well-conditioned, low-variance gradients that integrate
seamlessly with standard SDF and Eikonal losses, mitigating the
exploding sensitivities observed with many quadratic-or-higher
curvature regularizers.

3.4 Loss Function Components

Our training objective combines four terms that constrain the signed-
distance field both on and off the surface. The total loss is

Liotal = ApmLDM + ADNMLDNM + AEIK LEIK + Aopw Lopws (4)
with scalar weights Apym, Apnm, AEIK, and Aopw balancing the con-

tributions of the three regularizers against the data term.

Manifold Loss. For the N input points {Xi}fi , sampled on or very
near the target surface, we impose a Dirichlet condition that pulls
their SDF values to 0:

1 N
Low = 1 ) [ )
i=1

This term anchors the learned zero-level set to the point cloud and
provides first-order geometric fidelity.

Non-Manifold Loss. For M free-space samples {y; }]A/i 1 we adopt
the sign-agnostic formulation of Atzmon et al. [Atzmon and Lipman

2020]:

M
Lpnm = ﬁ Z exp(—a |f (y)I), a = 100. (6)
=
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Fig. 3. Hausdorff-distance heat maps (blue — low, yellow — high) for the
fandisk model reconstructed with ours, NSH, and NeurCADRecon.

The exponential quickly attenuates the penalty as |f| grows, sup-
pressing spurious oscillations close to the surface while allowing the
SDF to expand smoothly in regions devoid of geometric evidence,
thereby stabilizing training and preventing distant artifacts.

Eikonal Loss. To preserve the metric property of a true distance
field we enforce the Eikonal equation on K uniformly sampled points

{m )y
1 & 2
Lo = % kzzl( IVf(zollz ~1) ™)

This global term regularizes gradient norms, stabilizing optimization
and improving extrapolation away from the data [Gropp et al. 2020].

Off-Diagonal Weingarten Loss (ours). Let S12(6) denote the off-
diagonal entry of the 2x2 shape operator obtained by projecting
the Hessian onto a tangent frame rotated by a random angle 6 ~
U0, 27r). For L near-surface samples {pg}{,‘zl we penalize the abso-
lute curvature gap,

L
1
Lopw = I ;1|512(9[)|- (8)

The mixed second derivative Sz is evaluated either with a single
Hessian—vector product or via the symmetric finite-difference ap-
proximation, avoiding explicit Hessian assembly.

Minimizing |S12| drives the principal curvatures toward equality,
flattening parabolic and hyperbolic regions and rounding elliptic
regions uniformly. In all benchmarks the absolute-value variant
yields the most stable optimization and the lowest validation error,
so we use it by default in all experiments.

Weights. We keep most parameter weights identical to the settings
recommended in NeurCADRecon: Apy = 7000, Apnm = 600, A =
50, and Aopw = 10.

4 COMPUTATIONAL PATHWAYS

The mixed-curvature term S12 can be evaluated with or without ex-
plicit second-order auto-differentiation, giving two practical routes
that trade accuracy for running cost. The finite-difference minimizes
memory use, whereas the auto-diff variant offers higher accuracy.
Both achieve the curvature-gap regularization without assembling
the full Hessian.
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4.1 Off-Diagonal Weingarten Loss via Taylor Expansion

When raw throughput or framework simplicity is paramount we
approximate the mixed derivative with a symmetric finite-difference
stencil. This stencil evaluates the SDF at forward and backward
offsets of magnitude h, averages the two estimates, and therefore
incurs a truncation error of order h?. If only the one-sided (forward)
stencil is used, the truncation error is O(h) and the estimate is
biased. Our default uses the symmetric average which cancels the
odd powers and yields O(h?) accuracy.

Let xo be any point in the near-surface shell Q, and let u, v form
an orthonormal tangent frame at xq. For a small step h > 0 define
the forward offsets

Joo = f(xq), fi = flxq +hu),

ff = flxq+hv), ff =Ff(xq+h@u+v)),
and the backward offsets

fu =f(xq—hu),

Juy = f(xq = h(u+v)).
Define the one-sided mixed differences and their symmetric average

P _ fov = fd = K5+ foo
uv - hz )

plo) = Jfov = f =+ foo
uv. . hz 3

bl = (o) +0ls).

fv =flxq - hv),

Taylor justification (order and bias). Assume f € C3 near xq.
Using
flxq+ha) = foo+hVfTa+ Ih*a Hra+ O(h),
with a € {u, v, u+ v}, we obtain
fu+v —flf —f‘;r + foo = %hz[(u+v)THf(u+v) - uTHfu - VTHfV]
+O0(h)
=h*u"Hpv+O(h),

hence DL(;) = uTHfV + O(h). Replacing h — —h gives DL(I;) =
uTHf v + O(h). Averaging cancels odd powers:

DY) =" Hy(x0) v + O(H?). ©)

The off-diagonal entry of the 2 X 2 shape operator in the (u,v)
frame is
u' H £ (xQ) v
IVl
Using the finite-difference approximation gives the off-diagonal
Weingarten loss

S12(xq) =

(c)
‘Duv (xQ)| 2
Si2(xq)| ® —=——— + O(h°), 10
[S12 (xq)] VGl (h*) (10)
and the quantity used in the squared loss becomes
(c) 2
(Duv (xQ))
$2,(xg) » ~—2 2 4 O(KY). (11)
T IV (o) P

In practice we may omit the division by ||Vf(xq)| and mini-

(c

mize |Dyy | directly: because the Eikonal loss enforces ||V f||~1 in
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the shell, both definitions coincide up to a small scale factor. This
symmetric stencil converts the curvature-gap loss into a first-order
computation.

4.2 Off-Diagonal Weingarten Loss via Auto-Diff

For applications that favor numerical precision we exploit reverse-
mode auto-diff to obtain a Hessian—-vector product

uTHfV = uTVx[(fo) 'V].

From a shell point xo with orthonormal tangents u, v (Sec. 4.1) we
first run reverse mode on f(xq) to obtain the gradient g = Vf(xq).
Treating the scalar gy = g' v as a new objective and invoking reverse
mode a second time differentiates gy with respect to xq; the result
is the Hessian-vector product Hy(xq)v. An inner product with u
then yields u" H r(xq)v, and dividing by ||V f(xq)|| gives the exact
off-diagonal entry Si2(xq).

The first backward sweep delivers Vf; a second sweep differen-
tiates the scalar inner product (Vf)-v with respect to the input
coordinates, giving the exact mixed second derivative without ma-
terializing the full 3x3 Hessian. This doubles the backward sweeps
for the Weingarten loss samples and avoids the prohibitive memory
footprint of full Hessian assembly.

This Hessian—vector product therefore requires only two reverse-
mode sweeps and stores no matrix entries, so its cost grows linearly
with the number of shell samples and is independent of the ambient
dimension. Dividing by ||V f(xq)|| provides the exact S12(xq) value
used in the off-diagonal loss. Although more expensive than the first-
order finite-difference loss, this second-order route offers higher
accuracy and serves as our reference implementation for ablation
studies.

5 EXPERIMENTS

In this section, we first describe the implementation details and
evaluation metrics used in our validation. We then present a com-
prehensive comparison of our proposed off-diagonal Weingarten
based loss functions (ODW-AD and ODW-FD) against three baseline
methods-DiGS [Ben-Shabat et al. 2021], NSH [Wang et al. 2023],
and the state-of-the-art NeurCADRecon [Dong et al. 2024]—on two
subsets of the ABC dataset [Koch et al. 2019]. Finally, we analyze
convergence behavior and runtime performance.

5.1 Experimental Setup

Datasets. All experiments are conducted on two 100-example
subsets of the ABC dataset [Koch et al. 2019]. The first subset (1 MB
set) is a pseudo-random selection of 100 CAD models (each ~ 1 MB
in file size), while the second subset (5 MB set) comprises 100 more
complex human-chosen models (between 3.5MB and 9.5 MB, in
average ~ 5 MB) selected for their clean topology and well-defined
features. For each mesh, we uniformly sample a total of 30,000 points
to form the input point cloud. This preprocessing strategy ensures
that all methods receive identical input distributions. After that, at
each iteration 20,000 points are randomly chosen from the 30,000
points. Additional 20,000 non-manifold points are drawn via spatial
sampling within the mesh’s bounding volume.

$5%%%
QAR AR

SRR AR

2 B B B
"

Fig. 4. Comparison with state-of-the-art surface reconstruction. Our
method and NeurCADRecon demonstrate superior performance in recover-
ing clean, complete, and geometrically accurate surfaces, benefiting from
curvature-aware regularization that encourages developability. Notably, our
approach achieves comparable reconstruction quality while requiring only
half the training time of NeurCADRecon.

NeurCADRecon ours

Methods and Experimental Setup. We compare two variants of
our off-diagonal loss: ODW-AD (Auto-Diff) and ODW-FD (Finite-
Diff) against three baselines: DiGS[Ben-Shabat et al. 2021], Neural-
Singular-Hessian (NSH) [Wang et al. 2023] and NeurCADRecon
(NCR) [Dong et al. 2024]. All methods have been implemented
within a unified comparison framework to eliminate discrepancies
arising from differing network architectures or training pipelines.
Each method employs a SIREN MLP architecture [Sitzmann et al.
2020] with four hidden layers of 256 units and sine activations. All
models use a standard SIREN initialization, except DiGS, which
uses the MFGI initialization. Training is performed using the Adam
optimizer [Kingma and Ba 2017] with a learning rate of 5 x 107> for
up to 10,000 iterations. Early stopping is triggered if the Chamfer-
Distance metric plateaus for 1500 consecutive iterations. All other
hyperparameters, such as weight coefficients for curvature or nor-
mal losses, and other method specific parameters follow the settings
from the original implementations.

Hardware. Runtime and convergence experiments on the 1MB set
are performed on an NVIDIA H100 GPU. Additional qualitative and
quantitative experiments (e.g., on the 5 MB set) are run on NVIDIA
A100 and T4 GPUs, but only H100 results are included in the time-
comparison analysis. All machines are equipped with at least 32GB
of RAM.
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Fig. 5. Qualitative results on point clouds with varying levels of sparsity. We
use the original input with 30k points sampled from the ground truth mesh,
and generate subsampled versions with 10k, 5k, and 1k points. The top row
shows the input point clouds, and the bottom row shows the corresponding
reconstructed meshes.

5.2 Evaluation Metrics

Quantitative Metrics . We evaluate reconstruction accuracy using
three standard metrics. Chamfer Distance (CD), scaled by 10°, which
measures the similarity between two surfaces; lower values indicate
better accuracy. F1 Score (F1) is the harmonic mean of precision and
recall, computed using a distance threshold of 5 x 1073 between the
predicted and ground-truth point sets. The results are scaled by 102,
with higher values indicating a better overlap. Normal Consistency
(NC) captures the mean cosine similarity between predicted and
ground-truth normals, scaled by 10%; higher values denote better
alignment. For each of these metrics, we report the mean and stan-
dard deviation across all 100 shapes in each data subset. Additionally,
for the 1MB subset, we include additional efficiency measures: GPU
VRAM usage (in GB), Time per iteration (in milliseconds), and Best
Iteration achieved during evaluation—the iteration count at which
the best CD metric is reached. We utilize the time measurements
and best iteration count to calculate the convergence time.

5.3 Qualitative Results

Beyond aggregate scores, the spatial distribution of reconstruction
error is inspected in Figure 3 on a Hausdorff-distance heat map. Our
method markedly reduces peak deviations and suppresses local error
spikes compared with the baselines. Other qualitative results are
shown in Figure 1 and in the collection in Figure 10. We also compare
our method with other state-of-the-art reconstruction methods,
depicted in Figure 4, which shows our approach achieves comparable
reconstruction quality with NeurCADRecon [Dong et al. 2024].

5.4 Input Data Experiments

Data Sparsity. To assess the robustness of our method under
reduced sampling density with sparse input, we simulate sparse
inputs by randomly subsampling 10k, 5k, and 1k of the originally
sampled 30k point cloud data. This scenario mimics real-world
settings such as thin-walled plates, tubes, or surfaces with large
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GT mesh

Incomplete input Reconstructed mesh
point cloud with from incomplete point
hole cloud

Fig. 6. Using incomplete point cloud as input, our method is able to plausibly
fill in missing planar regions while preserving global surface continuity and
topological correctness.

inter-point gaps, where predicting accurate SDF values becomes
challenging.

As shown in both Figure 5 and quantitative Table 1 evaluations,
our method successfully reconstructs geometry of comparable qual-
ity to that obtained from the full-resolution input. Despite the sig-
nificant reduction in point density, the reconstructed shapes remain
smooth, topologically correct, and well-aligned with the ground
truth, without introducing spurious genus or holes.

Our method maintains high-fidelity reconstruction at 10k and 5k,
while severe degradation appears at 1k due to extreme sparsity.

Incomplete Point Clouds. To evaluate robustness to missing re-
gions, a circular patch on the surface is excised from each input
cloud while keeping the remaining samples unchanged. As reported
in Table 2 and Figure 6, the Weingarten loss-based reconstruction
degrades gracefully: Chamfer distance increases by only 64 % and
normal consistency drops by 0.7 %, yet global topology and salient
features are preserved, however, a visible bump remains.

Generalization to Non-CAD Shapes. Our method is specifically
designed for CAD data, where the Weingarten loss discourages

Table 1. Quantitative results on sparse point-cloud data with 10k, 5k, and
1k points sub-sampled from the original 30k-point cloud generated from
the ground-truth mesh.

Input Size NC 1T CDp, F17
30k 0.9936044 0.0024629 0.9693
10k 0.9926978 0.0024399 0.970385
5k 0.9917300 0.0024912 0.9693145
1k 0.7255813 0.0143693 0.3399991

Table 2. Quantitative comparison on incomplete data with hole for apple
shape.

input NC 1T CDg, | F17
Full 0.9897844 0.0029810 0.9334532
Hole 0.9824422 0.0048818 0.5045011
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Fig. 7. Reconstruction results on a non-CAD shape (Armadillo). Our method and NeurCADRecon achieve smooth and complete surfaces with fewer artifacts
than DiGS and NSH. While fine details are slightly smoothed, our approach offers a good balance between quality and efficiency, with only half the training

time of NeurCADRecon.

the reconstructed surface to be locally warped and twisted. To un-
derstand how this inductive bias affects performance on general,
non-CAD geometry, we evaluate our model on the standard Ar-
madillo shape, which contains rich organic, but also high frequency,
details.

As shown in Figure 7 and Table 3, our method produces smooth
and topologically consistent reconstructions, comparable to those
generated by NeurCADRecon [Dong et al. 2024], but at approxi-
mately half the training time. Compared to DiGS [Ben-Shabat et al.
2021] and Neural-Singular-Hessian (NSH) [Wang et al. 2023], both
our method and NeurCADRecon yield superior global shape recov-
ery, exhibiting fewer holes and more coherent topology. However,
we observe that fine surface details are partially smoothed out—an
expected consequence of the curvature regularization, which favors
larger planar or uniformly curved regions.

This experiment illustrates that, while our method is tailored for
CAD reconstruction, it remains robust on general shapes and offers
a favorable trade-off between geometric fidelity, smoothness, and
computational efficiency.

5.5 Ablation Studies

Ablation of Weingarten Loss Weight. To assess the impact of our
proposed off-diagonal Weingarten loss regularization, we conduct
an ablation study by varying the weight Agpw applied to the loss
term. Specifically, we test settings with Aopw € {0.1, 1, 10,100}
while keeping all other parameters fixed.

As shown in the quantitative results in Table 4 and qualitative
comparisons in Figure 8, our method consistently produces smooth
and structurally faithful reconstructions across a wide range of
weights. Importantly, when the curvature term is removed entirely

Table 3. Quantitative results on armadillo reconstruction with different
methods.

input NC T CDhr, | F17 time (s)
Our (ODW-AD) 0.9726746 0.0025855 0.9724751 877.15
Our (ODW-FD) 0.9799343 0.0023597 0.9877244 915.50
NeurCADRecon 0.9789649 0.0022634 0.9898299 1891.00
NSH 0.9615119 0.0056421 0.8860692 231.30
DiGS 0.9337240 0.0045840 0.6731318 714.34

(Acury = 0), the reconstruction quality drops significantly-exhibiting
surface noise, distorted geometry, or incorrect topology in challeng-
ing regions. These observations confirm that even a small weight
on the curvature loss is sufficient to improve reconstruction qual-
ity. The results highlight the importance of our Weingarten loss
formulation in guiding the implicit surface toward CAD-compliant
characteristics.

Comparison of Finite-Diff and Auto-Diff. Our method supports
two implementations of the curvature Weingarten loss: an Auto-Diff
version that computes the mixed second derivative analytically via
backward-mode auto-differentiation, and a Finite-Diff version that
approximates the same quantity using a symmetric finite-difference
stencil.

To compare these alternatives, we evaluate both their reconstruc-
tion quality and runtime performance. As shown in Table 5, Figure 9,
the two variants produce nearly identical reconstruction accuracy,
suggesting that the finite-difference approximation is sufficiently
precise when the neighborhood resolution we choose is small. This
validates the use of our discrete formulation as a numerically stable
and effective off-diagonal Weingarten loss.

In terms of runtime, we observe comparable training speeds be-
tween the two variants. While the Auto-Diff approach incurs addi-
tional backward passes (e.g., two extra reverse sweeps per batch),
the Finite-Diff version relies on multiple forward evaluations (six
additional SDF queries for the symmetric stencil; seven total includ-
ing foo if it is not reused). On networks of our scale, the difference
in wall-clock performance remains negligible, further supporting
the practicality of our lightweight first-order implementation.

Table 4. Quantitative results with different weight settings.

NC 1 cpy, | F11
Weight = 100 0.9776159 0.0035313 0.854874
Weight = 10 0.9939355 0.0024900 0.969770
Weight =1 0.9940296 0.0024305 0.9708199
Weight =0.1 0.9920184 0.0025440 0.9596963
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Fig. 8. We compare the reconstructed shape with different Weingarten-loss weight. From our result, our method consistently produces smooth and structurally
faithful reconstructions across a wide range of weights.

A
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Fig. 9. Ablation between Auto-Diff and Finite-Diff versions of our Wein-
garten loss. Both methods produce equally high-quality reconstructions,
validating the effectiveness of the finite-difference approximation.

input points

5.6 Quantitative Results

Human-selected Examples. On the cleaner 5 MB subset, see Ta-
ble 7, both Weingarten variants exhibit strong performance across
all metrics. ODW-FD achieves the lowest Chamfer Distance (CD),
outperforming NeurCADRecon, while still keeping the Normal Con-
sistency (NC) value very competitive. ODW-AD achieves an F1 score
only second to NeurCADRecon, while keeping the variance lower.
These results highlight the ability of both Weingarten loss methods
to generalize well on well-curated data, with ODW-FD showing the
most consistent geometric accuracy, and ODW-AD providing the
highest detection fidelity. Figure 10 depicts a few selected models
of the 5 MB set.

Pseudo-Random Examples. In the more varied 1 MB subset, see
Table 7, where input meshes are less structured, ODW-FD leads in
geometric accuracy with the lowest CD and a strong NC, closely
trailing NeurCADRecon. F1 scores remain competitive, with ODW-
FD and ODW-AD closely rivaling NeurCADRecon. These findings
demonstrate that even with varied input point clouds, both ODW-
FD and ODW-AD deliver reconstructions that are either on par with
or superior to NCR, and significantly outperform DiGS and NSH
across all metrics.

Table 5. Comparison between Auto-Diff and Finite-Diff methods.

NC T CDr, | F17 time (s)
ODW-AD 0.9944662 0.0029025 0.9127199 875.19
ODW-FD 0.9939950 0.0029577 0.9105444 909.76

Table 6. Comparison of iteration time (ms), convergence time (s)—computed
as mean iteration time X number of iterations, scaled to seconds—and GPU
memory usage. Within each column, the best is bold and underlined,
second-best is bold.

time (s)  (GB)
mean std. mean mean  mean

DiGS [Ben-Shabat et al. 2021]  4.14  0.03 8769  363.04 3.89

Iter. time (ms)  iter

NSH [Wang et al. 2023] 6.11 0.06 8249 504.01 6.10
NCR [Dong et al. 2024] 4.11 0.02 8129 334.10 6.16
ODW-AD 2.50 0.03 7552 188.80 3.46
ODW-FD 3.09 0.05 5519 170.54 3.70

Efficiency. In terms of computational efficiency, see Table 6, both
of our methods clearly outperform the baselines in terms of itera-
tion time (~ 2x speedup over NCR). The difference is even more
apparent when considering the overall training convergence time
(= 2x speedup over NCR). ODW-AD offers a strong trade-off with
the second-lowest iteration count and runtime, while consuming
modest GPU memory. Compared to NeurCADRecon’s long run-
time and high memory footprint, both Weingarten methods are
significantly more efficient. This demonstrates that ODW-FD and
ODW-AD not only offer high-quality reconstructions but do so with
favorable resource demands, making them well suited for scalable
and time-sensitive applications.

6 DISCUSSION AND CONCLUSIONS

Discussion. The proposed off-diagonal Weingarten loss term min-
imizes the expectation Lopw = Eg [sz] o (k2 — k1)2, so gradient
descent drives the two principal curvatures to coincide. Where one
curvature is already zero (parabolic zones) or of opposite sign (hy-
perbolic zones) the only viable limit is k1 = k2 = 0, hence those
patches relax to planes. Where both curvatures share a sign (elliptic
zones) equality produces an umbilic state and the patch rounds into
a spherical cap whose radius is fixed by the data term. In this way
the loss selectively flattens developable and saddle parts while regu-
larizing doubly-curved areas without erasing their overall shape.

Because the Weingarten loss penalty acts only on the curvature
difference, it complements rather than competes with the Dirichlet
and Eikonal constraints: the Dirichlet term fits the sampled points
exactly, the Eikonal term keeps the normal lines straight, and the
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Table 7. Quantitative results on the ABC dataset [Koch et al. 2019]. Evaluation is conducted on two resolution subsets (1 MB and 5 MB) using three metrics:
Normal Consistency (NC), Chamfer Distance (CD), and F1 score (F1). For each metric’s mean value, the best result is bold and underlined, and the

second-best is bold. NC and F1 x10? and CD x10%

| 1 MB set | 5MB set
NC 1T CD | F17 NC T CD | F17
mean std. mean std. mean std. mean std. mean std. mean std.
DiGS [Ben-Shabat et al. 2021] 92.30 5.84 7.21 4.20 47.91 30.25 94.01 5.41 8.47 6.91 62.63 29.47
NSH [Wang et al. 2023] 94.84 6.09 6.73 6.00 64.94 34.32 97.44 2.54 5.27 4.85 86.67 14.46
NCR [Dong et al. 2024] 95.43 4.92 3.92 3.72 87.74 16.33 97.59 2.35 4.99 4.17 88.29 15.65
ODW-AD 93.79 6.80 4.59 3.98 83.80 18.28 97.23 2.96 5.27 4.60 86.82 13.81
ODW-FD 94.69 541 3.84 3.44 87.65 16.02 97.46 248 4.93 4.38 86.61 13.92

Weingarten loss term eliminates the residual tangential “twist” that
is unconstrained by first-order information.

Compared to the Gaussian-curvature loss introduced in previ-
ous work [Dong et al. 2024], we showed in our results that, under
identical shapes and training settings, our Weingarten loss delivers
essentially the same reconstruction accuracy and boundary sharp-
ness while requiring only one Hessian—-vector product per sample
instead of the multiple second-order evaluations and quadratic com-
bination needed for the Gaussian term, resulting in a markedly
lower compute and memory footprint during training.

Limitations and Future Work. The off-diagonal Weingarten loss is
lightweight and effective, yet several boundaries remain. Because it
equalizes the two principal curvatures, it assigns a non-zero penalty
to developable but curved primitives such as cylinders and cones;
with a balanced weight the data term keeps the correct radius or
slope, but an overly strong weight can nudge these patches toward
planar or spherical limits. The regularizer acts purely locally in the
off-surface shell and carries no notion of long-range patch coherence,
so global fairness constraints—keeping opposite faces of a thin sheet
parallel, for example—are not guaranteed.

The exact Hessian-vector implementation also doubles the back-
ward pass for Weingarten samples, so the finite-difference stencil
remains preferable on memory-constrained hardware, with a trun-
cation error O(h?) for the symmetric stencil (or O(h) if only the
one-sided stencil is used). Finally, the Weingarten loss has no explicit
mechanism for preserving sharp feature lines: narrow chamfers are
retained only when they are faithfully sampled and reproduced by
the decoder, suggesting that an edge-aware weighting scheme is a
useful direction for future work.

Our off-diagonal Weingarten loss treats curvature reduction purely
locally; an immediate extension is to learn an adaptive weight Aopw
that depends on local feature probability, so planar zones flatten
faster while highly curved zones remain expressive. A second av-
enue is joint optimization with mesh extraction: coupling the Wein-
garten loss with differentiable DMC/dual-contouring could avoid
the Marching-Cubes voxel bias.

Conclusions. We introduced the off-diagonal Weingarten loss that
measures the curvature gap and needs only one Hessian-vector prod-
uct, giving ~ 2X faster convergence than full Gaussian-curvature
regularization and using roughly half the GPU memory, while

matching or surpassing state-of-the-art accuracy on the ABC bench-
mark. Two proposed implementations (auto-diff and finite-diff) per-
form similarly; the finite-difference stencil is preferable when back-
propagation memory is scarce. The technique is drop-in for any
SIREN-based reconstruction pipeline and our code is available at
https://flatcad.github.io/.
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